MICRONAS

Hardware
Documentation

Data Sheet

HAL ${ }^{\oplus}$ 525, HAL 526

Hall-Effect Switches

Copyright, Warranty, and Limitation of Liability

The information and data contained in this document are believed to be accurate and reliable. The software and proprietary information contained therein may be protected by copyright, patent, trademark and/or other intellectual property rights of Micronas. All rights not expressly granted remain reserved by Micronas.

Micronas assumes no liability for errors and gives no warranty representation or guarantee regarding the suitability of its products for any particular purpose due to these specifications.

By this publication, Micronas does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Commercial conditions, product availability and delivery are exclusively subject to the respective order confirmation.

Any information and data which may be provided in the document can and do vary in different applications, and actual performance may vary over time.

All operating parameters must be validated for each customer application by customers' technical experts. Any new issue of this document invalidates previous issues. Micronas reserves the right to review this document and to make changes to the document's content at any time without obligation to notify any person or entity of such revision or changes. For further advice please contact us directly.

Do not use our products in life-supporting systems, aviation and aerospace applications! Unless explicitly agreed to otherwise in writing between the parties, Micronas' products are not designed, intended or authorized for use as components in systems intended for surgical implants into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death could occur.

No part of this publication may be reproduced, photocopied, stored on a retrieval system or transmitted without the express written consent of Micronas.

Micronas Trademarks

- HAL

Micronas Patents\#

Choppered Offset Compensation protected by Micronas patents no. US5260614, US5406202, EP0525235 and EP0548391.

Third-Party Trademarks

All other brand and product names or company names may be trademarks of their respective companies.

Contents

Page Section Title

4
4
4
4
4
5

5
5

6
7
7
12
12
12
12
13

24

Section Title

1. Introduction
1.1. Features
1.2. Switch Type
1.3. Marking Code
1.4. Operating Junction Temperature Range $\left(T_{J}\right)$
1.5. Hall Sensor Package Codes
1.6. Solderability and Welding
1.7. Pin Connections
2. Functional Description
3. Specifications
3.1. Outline Dimensions
3.2. Dimensions of Sensitive Area
3.3. Positions of Sensitive Areas
3.4. Absolute Maximum Ratings
3.4.1. Storage and Shelf Life
3.5. Recommended Operating Conditions
3.6. Characteristics
3.7. Magnetic Characteristics Overview
4. Type Description
4.1. HAL $525{ }^{\text {そ }}$
4.2. HAL 526
5. Application Notes
5.1. Ambient Temperature
5.2. Extended Operating Conditions
5.3. Start-Up Behavior
5.4. EMC and ESD
6. Data Sheet History

Hall-Effect Switches

Release Note: Revision bars indicate significant changes to the previous edition.

1. Introduction

The Hall switches HAL 525^{\sharp} and HAL 526 are produced in CMOS technology. These sensors include a temperature-compensated Hall plate with active offset compensation, a comparator, and an open-drain output transistor. The comparator compares the actual magnetic flux through the Hall plate (Hall voltage) with the fixed reference values (switching points). Accordingly, the output transistor is switched on or off.

The active offset compensation leads to magnetic parameters which are robust against mechanical stress effects. In addition, the magnetic characteristics are constant in the full supply voltage and temperature range.

This sensor is designed for industrial and automotive applications and operates with supply voltages from 3.8 V to 24 V in the ambient temperature range from $-40^{\circ} \mathrm{C}$ up to $125^{\circ} \mathrm{C}$.
The HAL $525^{\text {¡ }}$ and HAL 526 are available in the SMD package SOT89B-1 and in the leaded versions TO92UA-1 and TO92UA-2.

1.1. Features

- operates from 3.8 V to 24 V supply voltage
- operates with static magnetic fields and dynamic magnetic fields up to 10 kHz
- overvoltage protection at all pins
- reverse-voltage protection at V_{DD}-pin
- magnetic characteristics are robust against mechanical stress effects
- short-circuit protected open-drain output by thermal shut down
- constant switching points over a wide supply voltage range
- the decrease of magnetic flux density caused by rising temperature in the sensor system is compensated by a built-in negative temperature coefficient of the magnetic characteristics
- ideal sensor for window lifter, ignition timing, and revolution counting in extreme automotive and industrial environments
- EMC corresponding to ISO 7637

1.2. Switch Type

Type	Switching Behavior	Typical Temperature Coefficient	see Page
$525^{\text {そ }}$	latching	$-2000 \mathrm{ppm} / \mathrm{K}$	19
526	latching	$-2000 \mathrm{ppm} / \mathrm{K}$	21

Note: ${ }^{\text {『 }}$: HAL 525 is not available for new designs. Please use HAL 526 instead.

Latching Sensor:

Latching sensors require a magnetic north and south pole for correct functioning. The output turns low with the magnetic south pole on the branded side of the package and turns high with the magnetic north pole on the branded side. The output does not change if the magnetic field is removed. For changing the output state, the opposite magnetic field polarity must be applied.

1.3. Marking Code

All Hall sensors have a marking on the package surface (branded side). This marking includes the name of the sensor and the temperature range.

Type	Temperature Range	
	K	E
HAL $525^{\text {¡ }}$	525 K	-
HAL 526	526 K	526 E

1.4. Operating Junction Temperature Range (T_{J})

The Hall sensors from Micronas are specified to the chip temperature (junction temperature T_{J}).

K: $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
E: $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
The relationship between ambient temperature $\left(T_{A}\right)$ and junction temperature is explained in Section 5.1. on page 23.

1.5. Hall Sensor Package Codes

HALXXXPA-T

Temperature Range: K or E
Package: SF for SOT89B-1
UA for TO92UA
Type: 526

Example: HAL526UA-E

\rightarrow Type: 526
\rightarrow Package: TO92UA
\rightarrow Temperature Range: $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Hall sensors are available in a wide variety of packaging versions and quantities. For more detailed information, please refer to the brochure: "Hall Sensors: Ordering Codes, Packaging, Handling".

1.6. Solderability and Welding

During soldering reflow processing and manual reworking, a component body temperature of 260 C should not be exceeded.

Welding

Device terminals should be compatible with laser and resistance welding. Please note that the success of the welding process is subject to different welding parameters which will vary according to the welding technique used. A very close control of the welding parameters is absolutely necessary in order to reach satisfying results. Micronas, therefore, does not give any implied or express warranty as to the ability to weld the component.

1.7. Pin Connections

Fig. 1-1: Pin configuration

2. Functional Description

The Hall effect sensor is a monolithic integrated circuit that switches in response to magnetic fields. If a magnetic field with flux lines perpendicular to the sensitive area is applied to the sensor, the biased Hall plate forces a Hall voltage proportional to this field. The Hall voltage is compared with the actual threshold level in the comparator. The temperature-dependent bias increases the supply voltage of the Hall plates and adjusts the switching points to the decreasing induction of magnets at higher temperatures. If the magnetic field exceeds the threshold levels, the open drain output switches to the appropriate state. The built-in hysteresis eliminates oscillation and provides switching behavior of output without bouncing.

Magnetic offset caused by mechanical stress is compensated for by using the "switching offset compensation technique". Therefore, an internal oscillator provides a two phase clock. The Hall voltage is sampled at the end of the first phase. At the end of the second phase, both sampled and actual Hall voltages are averaged and compared with the actual switching point. Subsequently, the open drain output switches to the appropriate state. The time from crossing the magnetic switching level to switching of output can vary between zero and $1 / f_{\text {osc }}$.

Shunt protection devices clamp voltage peaks at the Output-pin and V_{DD}-pin together with external series resistors. Reverse current is limited at the $\mathrm{V}_{\mathrm{DD}}-\mathrm{pin}$ by an internal series resistor up to -15 V . No external reverse protection diode is needed at the V_{DD}-pin for reverse voltages ranging from 0 V to -15 V .

Fig. 2-1: HAL 525 and HAL 526 block diagram

Fig. 2-2: Timing diagram of HAL 526

3. Specifications

3.1. Outline Dimensions

physical dimensions do not include moldflash.

A4, $\mathrm{y}=$ these dimensions are different for each sensor type and are specified in the data sheet.

UNIT	A1	A2	A3	b	b1	Bd	c	D	D1	e	E1	L1
mm	0.10 0.02	1.20 1.10	0.73	0.4	1.7	0.2	0.15	4.0	2.6 2.5	1.5	4.6 4.5	0.25 min.

JEDEC STANDARD		ANSI	ISSUE DATEYY-MM-DD	DRAWING-NO.	ZG-NO.
Issue	ITEM NO.				
-	-	$\oplus \square$	07-07-02	06610.0001.4	ZG001010_Ver. 03

Fig. 3-1:
SOT89B-1: Plastic Small Outline Transistor package, 4 leads
Ordering code: SF
Weight approximately 0.034 g

physical dimensions do not include moldflash.
solderability is guaranteed between end of pin and distance F1.

A4, $y=$ these dimensions are different for each sensor type and is specified in the data sheet
$\mathrm{min} / \mathrm{max}$ of D1 are specified in the datasheet.

UNIT	A2	A3	b	Bd	c	D1	e	E1	F1	F2	L	Θ
mm	1.55 1.45	0.7	0.42	0.2	0.36	3.05	1.27	4.11 4.01	1.2 0.8	0.60 0.42	15.5 $m i n$	45°

JEDEC STANDARD		ANSI	ISSUE DATE YY-MM-DD	DRAWING-NO.	ZG-NO.
ISSUE	ITEM NO.				
-	-		09-06-05	06612.0001 .4	ZG001012_Ver. 06

© Copyright 2009 Micronas GmbH , all rights reserved

Fig. 3-2:
TO92UA-2: Plastic Transistor Standard UA package, 3 leads, not spread
Weight approximately 0.106 g

physical dimensions do not include moldflash.
solderability is guaranteed between end of pin and distance F1.

A4, $y=$ these dimensions are different for each sensor type and is specified in the data sheet.
$\mathrm{min} / \mathrm{max}$ of D1 are specified in the datasheet.

UNIT	A2	A3	b	Bd	c	D1	e	E1	F1	F2	F3	L	L1	Θ
mm	$\begin{aligned} & 1.55 \\ & 1.45 \end{aligned}$	0.7	0.42	0.2	0.36	3.05	2.54	$\begin{aligned} & 4.11 \\ & 4.01 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & \mathrm{~min} \end{aligned}$	$\begin{aligned} & 15.0 \\ & \mathrm{~min} \end{aligned}$	45°

JEDEC STANDARD		ANSI	ISSUE DATE YY-MM-DD	DRAWING-NO.	ZG-NO.
ISSUE	ITEM NO.				
-	-	\oplus	09-06-09	06616.0001.4	ZG001016_Ver. 05

© Copyright 2009 Micronas GmbH , all rights reserved

Fig. 3-3:
TO92UA-1: Plastic Transistor Standard UA package, 3 leads, spread
Weight approximately 0.106 g

feed direction
all dimensions in mm

other dimensions see drawing of bulk
max. allowed tolerance over 20 hole spacings ± 1.0
$\mathrm{H} 1=$ this dimension is different for each sensor type and is specified in the data sheet

UNIT	D0	F1	F2	H	Δh	L	PO	P2	Δp	T	T1	W	Wo	W1	W2
mm	4.0	$\begin{aligned} & 1.47 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 1.47 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 18.0 \end{aligned}$	± 1.0	$\begin{aligned} & 11.0 \\ & \max \end{aligned}$	$\begin{aligned} & 13.2 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 7.05 \\ & 5.65 \end{aligned}$	± 1.0	0.5	0.9	18.0	6.0	9.0	0.3

JEDEC STANDARD		ANSI	ISSUE DATE YY-MM-DD	DRAWING-NO.	ZG-NO.
ISSUE	ITEM NO.				
-	ICE 60286-2		07-01-18	06631.0001 .4	ZG001031_Ver. 03

Fig. 3-4:
TO92-2: Dimensions ammopack inline, not spread

Fig. 3-5:
TO92UA-1: Dimensions ammopack inline, spread

3.2. Dimensions of Sensitive Area

$0.25 \mathrm{~mm} \times 0.12 \mathrm{~mm}$

3.3. Positions of Sensitive Areas

	SOT89B-1	TO92UA-1/-2
y	0.95 mm nominal	1.0 mm nominal
A4	0.3 mm nominal	0.3 mm nominal
D1	see drawing	$3.05 \mathrm{~mm} \pm 0.05 \mathrm{~mm}$
H1	Not applicable	$\min .21 \mathrm{~mm}$ $\max .23 .1 \mathrm{~mm}$

3.4. Absolute Maximum Ratings

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods will affect device reliability.

This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than absolute maximum-rated voltages to this circuit.

All voltages listed are referenced to ground (GND).

Symbol	Parameter	Pin No.	Min.	Max.	Unit
V_{DD}	Supply Voltage	1	-15	$28^{1)}$	V
V_{O}	Output Voltage	3	-0.3	$28^{1)}$	V
I_{O}	Continuous Output On Current	3	-	$50^{1)}$	mA
T_{J}	Junction Temperature Range		-40		
-40	150				
$170^{2)}$	${ }^{\circ} \mathrm{C}$				

${ }^{1)}$ as long as $T_{J} \max$ is not exceeded
2) t < 1000 h

3.4.1. Storage and Shelf Life

The permissible storage time (shelf life) of the sensors is unlimited, provided the sensors are stored at a maximum of $30^{\circ} \mathrm{C}$ and a maximum of 85% relative humidity. At these conditions, no Dry Pack is required.

Solderability is guaranteed for one year from the date code on the package.

3.5. Recommended Operating Conditions

Functional operation of the device beyond those indicated in the "Recommended Operating Conditions" of this specification is not implied, may result in unpredictable behavior of the device and may reduce reliability and lifetime.

All voltages listed are referenced to ground (GND).

Symbol	Parameter	Pin No.	Min.	Max.	Unit
V_{DD}	Supply Voltage	1	3.8	24	V
I_{O}	Continuous Output On Current	3	0	20	mA
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (output switched off)	3	0	24	V

3.6. Characteristics

at $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.8 \mathrm{~V}$ to 24 V ,
at Recommended Operation Conditions if not otherwise specified in the column "Conditions".
Typical Characteristics for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Symbol } & \text { Parameter } & \text { Pin No. } & \text { Min. } & \text { Typ. } & \text { Max. } & \text { Unit } & \text { Test Conditions } \\ \hline \mathrm{I}_{\mathrm{DD}} & \begin{array}{l}\text { Supply Current over } \\ \text { Temperature Range }\end{array} & 1 & 1.6 & 3 & 5.2 & \mathrm{~mA} & \\ \hline \mathrm{~V}_{\mathrm{DDZ}} & \begin{array}{l}\text { Overvoltage Protection } \\ \text { at Supply }\end{array} & 1 & - & 28.5 & 32 & \mathrm{~V} & \begin{array}{l}\mathrm{I}_{\mathrm{DD}}=25 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ \mathrm{t}=20 \mathrm{~ms}\end{array} \\ \hline \mathrm{~V}_{\mathrm{OZ}} & \text { Overvoltage Protection at Output } & 3 & - & 28 & 32 & \mathrm{~V} & \begin{array}{l}\mathrm{I}_{\mathrm{OH}}=25 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ \mathrm{t}=20 \mathrm{~ms}\end{array} \\ \hline \mathrm{~V}_{\mathrm{OL}} & \text { Output Voltage } & 3 & - & 130 & 280 & \mathrm{mV} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\end{array}\right]$

SOT89B Package

$\mathrm{R}_{\text {thja }}$ $R_{\text {thjc }}$ $R_{\text {thjs }}$	Thermal Resistance Junction to Ambient Junction to Case Junction to Solder Point	-	-	-	$\begin{aligned} & 209^{1)} \\ & 56^{1)} \\ & 82^{2)} \end{aligned}$	K/W K/W K/W	$30 \mathrm{~mm} \times 10 \mathrm{~mm} \times 1.5 \mathrm{~mm}$, pad size (see Fig. 3-6)
TO92UA Package							
$\mathrm{R}_{\text {thja }}$ $R_{\text {thjc }}$ $R_{\text {thjs }}$	Thermal Resistance Junction to Ambient Junction to Case Junction to Solder Point	- - -	-	-	$\begin{aligned} & 246^{1)} \\ & 70^{1)} \\ & 127^{2} \end{aligned}$	K/W K/W K/W	
${ }^{1)}$ Measured with a 1 s0p board ${ }^{2}$) Measured with a 1s1p board							

Fig. 3-6: Recommended pad size SOT89B-1
Dimensions in mm

| 3.7. Magnetic Characteristics Overview

at $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.8 \mathrm{~V}$ to 24 V
Typical Characteristics for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$.
Magnetic flux density values of switching points.
Positive flux density values refer to the magnetic south pole at the branded side of the package.

Sensor	Parameter	On point $\mathrm{B}_{\text {ON }}$			Off point $\mathrm{B}_{\text {OFF }}$			Hysteresis $\mathrm{B}_{\mathrm{HYS}}$			Unit
Switching Type	TJ	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
HAL 525	$-40^{\circ} \mathrm{C}$	11.8	15.8	19.2	-19.2	-15.8	-11.8	27.4	31.6	35.8	mT
latching	$25^{\circ} \mathrm{C}$	11	14	17	-17	-14	-11	24	28	32	mT
	$140{ }^{\circ} \mathrm{C}$	6.5	10	14	-14	-10	-6.5	16	20	26	mT
HAL 526	$-40^{\circ} \mathrm{C}$	11.8	15.8	19.2	-19.2	-15.8	-11.8	27.4	31.6	35.8	mT
latching	$25^{\circ} \mathrm{C}$	11	14	17	-17	-14	-11	24	28	32	mT
	$140^{\circ} \mathrm{C}$	6.5	10	14	-14	-10	-6.5	16	20	26	mT

Note: For detailed descriptions of the individual types, see pages 19 and following.

Fig. 3-7: Typical supply current versus supply voltage

Fig. 3-8: Typical supply current versus supply voltage

Fig. 3-9: Typical supply current versus ambient temperature

Fig. 3-10: Typ. internal chopper frequency versus ambient temperature

Fig. 3-11: Typical output low voltage versus supply voltage

Fig. 3-12: Typical output low voltage versus supply voltage

Fig. 3-13: Typical output low voltage versus ambient temperature

Fig. 3-14: Typ. output high current versus output voltage

Fig. 3-15: Typical output leakage current versus ambient temperature

Fig. 3-16: Typ. spectrum of supply current

Fig. 3-17: Typ. spectrum of supply voltage

4．Type Description

4．1．HAL $525{ }^{\text {そ }}$

The HAL $525^{\text {そ }}$ is a latching sensor（see Fig．4－1）．
The output turns low with the magnetic south pole on the branded side of the package and turns high with the magnetic north pole on the branded side．The out－ put does not change if the magnetic field is removed． For changing the output state，the opposite magnetic field polarity must be applied．

For correct functioning in the application，the sensor requires both magnetic polarities（north and south）on the branded side of the package．

Magnetic Features：

－switching type：latching
－low sensitivity
－typical $\mathrm{B}_{\mathrm{ON}}: 14 \mathrm{mT}$ at room temperature
－typical $\mathrm{B}_{\mathrm{OFF}}$ ：-14 mT at room temperature
－operates with static magnetic fields and dynamic magnetic fields up to 10 kHz
－typical temperature coefficient of magnetic switching points is $-2000 \mathrm{ppm} / \mathrm{K}$

Applications

The HAL $525^{\text {そ }}$ is an optimal sensor for applications with alternating magnetic signals such as：
－multipole magnet applications，
－rotating speed measurement，
－commutation of brushless DC motors，and
－window lifter．

Fig．4－1：Definition of magnetic switching points for the HAL 525

Note：${ }^{\text {．HAL }} 525$ is not available for new designs． Please use HAL 526 instead．

Magnetic Characteristics at $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.8 \mathrm{~V}$ to 24 V ， Typical Characteristics for $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$

Magnetic flux density values of switching points．
Positive flux density values refer to the magnetic south pole at the branded side of the package．

ParameterT_{J}	On point $\mathrm{B}_{\text {ON }}$			Off point $\mathrm{B}_{\text {OFF }}$			Hysteresis $\mathrm{B}_{\mathrm{HYS}}$			Magnetic Offset			Unit
	Min．	Typ．	Max．										
$-40^{\circ} \mathrm{C}$	11.8	15.8	19.2	－19．2	－15．8	－11．8	27.4	31.6	35.8		0		mT
$25^{\circ} \mathrm{C}$	11	14	17	－17	－14	－11	24	28	32	－2	0	2	mT
$100^{\circ} \mathrm{C}$	8	11	15.5	－15．5	－11	－8	18.5	22	28.7		0		mT
$140^{\circ} \mathrm{C}$	6.5	10	14	－14	－10	－6．5	16	20	26		0		mT

The hysteresis is the difference between the switching points $\mathrm{B}_{\mathrm{HYS}}=\mathrm{B}_{\mathrm{ON}}-\mathrm{B}_{\mathrm{OFF}}$
The magnetic offset is the mean value of the switching points $\mathrm{B}_{\mathrm{OFFSET}}=\left(\mathrm{B}_{\mathrm{ON}}+\mathrm{B}_{\mathrm{OFF}}\right) / 2$

Fig. 4-2: Typ. magnetic switching points versus supply voltage

I

Fig. 4-3: Typ. magnetic switching points versus supply voltage

Fig. 4-4: Magnetic switching points versus temperature

Note: In the diagram "Magnetic switching points versus ambient temperature", the curves for $\mathrm{B}_{\text {ON }}$ min, $\mathrm{B}_{\text {ON }}$ max, $\mathrm{B}_{\text {OFF }}$ min, and $\mathrm{B}_{\text {OFF }}$ max refer to junction temperature, whereas typical curves refer to ambient temperature.

4.2. HAL 526

The HAL 526 is a latching sensor (see Fig. 4-5).
The output turns low with the magnetic south pole on the branded side of the package and turns high with the magnetic north pole on the branded side. The output does not change if the magnetic field is removed. For changing the output state, the opposite magnetic field polarity must be applied.

For correct functioning in the application, the sensor requires both magnetic polarities (north and south) on the branded side of the package.

Magnetic Features:

- switching type: latching
- Iow sensitivity
- typical B_{ON} : 14 mT at room temperature
- typical $\mathrm{B}_{\mathrm{OFF}}$: -14 mT at room temperature
- operates with static magnetic fields and dynamic magnetic fields up to 10 kHz
- typical temperature coefficient of magnetic switching points is $-2000 \mathrm{ppm} / \mathrm{K}$

Applications

The HAL 526 is an optimal sensor for applications with alternating magnetic signals such as:

- multipole magnet applications,
- rotating speed measurement,
- commutation of brushless DC motors, and
- window lifter.

Fig. 4-5: Definition of magnetic switching points for the HAL 526

Magnetic Characteristics at $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.8 \mathrm{~V}$ to 24 V , Typical Characteristics for $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$

Magnetic flux density values of switching points.
Positive flux density values refer to the magnetic south pole at the branded side of the package.

ParameterT_{J}	On point $\mathrm{B}_{\text {ON }}$			Off point $\mathrm{B}_{\text {OFF }}$			Hysteresis $\mathrm{B}_{\mathrm{HYS}}$			Magnetic Offset			Unit
	Min.	Typ.	Max.										
$-40^{\circ} \mathrm{C}$	11.8	15.8	19.2	-19.2	-15.8	-11.8	27.4	31.6	35.8		0		mT
$25^{\circ} \mathrm{C}$	11	14	17	-17	-14	-11	24	28	32	-2	0	2	mT
$100^{\circ} \mathrm{C}$	8	11	15.5	-15.5	-11	-8	18.5	22	28.7		0		mT
$140^{\circ} \mathrm{C}$	6.5	10	14	-14	-10	-6.5	16	20	26		0		mT

The hysteresis is the difference between the switching points $\mathrm{B}_{\mathrm{HYS}}=\mathrm{B}_{\mathrm{ON}}-\mathrm{B}_{\mathrm{OFF}}$
The magnetic offset is the mean value of the switching points $\mathrm{B}_{\mathrm{OFFSET}}=\left(\mathrm{B}_{\mathrm{ON}}+\mathrm{B}_{\mathrm{OFF}}\right) / 2$

Fig. 4-6: Typ. magnetic switching points versus supply voltage

Fig. 4-8: Magnetic switching points versus temperature

Note: In the diagram "Magnetic switching points versus ambient temperature", the curves for $\mathrm{B}_{\text {ON }}$ min, $\mathrm{B}_{\text {ON }}$ max, $\mathrm{B}_{\text {OFF }}$ min, and $\mathrm{B}_{\text {OFF }}$ max refer to junction temperature, whereas typical curves refer to ambient temperature.

5. Application Notes

5.1. Ambient Temperature

Due to the internal power dissipation, the temperature on the silicon chip (junction temperature T_{J}) is higher than the temperature outside the package (ambient temperature T_{A}).

$$
T_{J}=T_{A}+\Delta T
$$

At static conditions and continuous operation, the following equation applies:

$$
\Delta T=I_{D D} \times V_{D D} \times R_{t h}
$$

If $I_{\text {OUT }}>I_{\text {DD }}$, please contact Micronas application support for detailed instructions on calculating ambienttemperature.

For typical values, use the typical parameters. For worst case calculation, use the max. parameters for I_{DD} and R_{th}, and the max. value for V_{DD} from the application.

For all sensors, the junction temperature range T_{J} is specified. The maximum ambient temperature $T_{\text {Amax }}$ can be calculated as:

$$
T_{\text {Amax }}=T_{\text {Jmax }}-\Delta T
$$

5.2. Extended Operating Conditions

All sensors fulfill the electrical and magnetic characteristics when operated within the Recommended Operating Conditions (see page 13).

Supply Voltage Below 3.8 V

Typically, the sensors operate with supply voltages above 3 V , however, below 3.8 V some characteristics may be outside the specification.

Note: The functionality of the sensor below 3.8 V is not tested. For special test conditions, please contact Micronas.

5.3. Start-Up Behavior

Due to the active offset compensation, the sensors have an initialization time (enable time $t_{e n(0)}$) after applying the supply voltage. The parameter $\mathrm{t}_{\mathrm{en}(\mathrm{O})}$ is specified in the Characteristics (see page 14).

During the initialization time, the output state is not defined and the output can toggle. After $\mathrm{t}_{\mathrm{en}(\mathrm{O})}$, the output will be low if the applied magnetic field B is above B_{ON}. The output will be high if B is below $\mathrm{B}_{\mathrm{OFF}}$.

For magnetic fields between $\mathrm{B}_{\mathrm{OFF}}$ and B_{ON}, the output state of the HAL sensor after applying V_{DD} will be either low or high. In order to achieve a well-defined output state, the applied magnetic field must be above $\mathrm{B}_{\text {ONmax }}$, respectively, below $\mathrm{B}_{\text {OFFmin }}$.

5.4. EMC and ESD

For applications with disturbances on the supply line or radiated disturbances, a series resistor and a capacitor are recommended (see Fig. 5-1). The series resistor and the capacitor should be placed as closely as possible to the HAL sensor.

Applications with this arrangement passed the EMC tests according to the product standards ISO 7637.

Please contact Micronas for the detailed investigation reports with the EMC and ESD results.

Fig. 5-1: Test circuit for EMC investigations

6. Data Sheet History

1. Final data sheet: "HAL 525 Hall Effect Sensor IC", April 23, 1997, 6251-465-1DS. First release of the final data sheet.
2. Final data sheet: "HAL 525 Hall Effect Sensor IC", March 10, 1999, 6251-465-2DS. Second release of the final data sheet. Major changes:

- additional package SOT-89B
- outline dimensions for SOT-89A and TO-92UA changed
- electrical characteristics changed
- section 4.2.: Extended Operating Conditions added
- section 4.3.: Start-up Behavior added

3. Final data sheet: "HAL 525, HAL 535 Hall Effect Sensor Family", Aug. 30, 2000, 6251-465-3DS. Third release of the final data sheet. Major changes:

- new sensor HAL 535 added
- outline dimensions for SOT-89B: reduced tolerances
- SMD package SOT-89A removed
- temperature range " C " removed

4. Data Sheet: "HAL 525, HAL 535 Hall Effect Sensor Family", Aug. 8, 2002, 6251-465-4DS. Fourth release of the data sheet. Major changes:

- outline dimensions for TO-92UA changed
- temperature range " A " removed

5. Data Sheet: "HAL 525, HAL 526, HAL 535 Hall Effect Sensor Family", Oct. 22, 2002, 6251-4655DS. Fifth release of the data sheet. Major changes:

- new sensor HAL 526 added

6. Data Sheet: "HAL 526, HAL 535 Hall Effect Sensor Family", March 31, 2004, 6251-465-6DS. Sixth release of the data sheet. Major changes:

- specification for HAL525 removed
- new package diagrams for SOT89B-1 and TO92UA-1
- package diagram for TO92UA-2 added
- ammopack diagrams for TO92UA-1/-2 added

7. Data Sheet: "HAL 526 Hall-Effect Switch", Nov. 8, 2007, DSH000144_001EN. Seventh release of the data sheet. Major changes:

- specification for HAL 535 removed
- package diagrams for SOT89B-1, TO92UA-1, and TO92UA-2 updated
- ammopack diagrams for TO92UA-1/-2 updated

8. Data Sheet: "HAL 526 Hall-Effect Switches", Feb. 6, 2009, DSH000144_002EN. Eighth release of the data sheet. Major changes:

- Section 1.6. "Solderability and Welding" updated

9. Data Sheet: "HAL 525, HAL 526 Hall-Effect Switches",
Nov. 30, 2009, DSH000144_003EN. Ninth release of the data sheet. Major changes:

- HAL 525 added

